Multi-point ground-based observations of the thermosphere and ionosphere over Asia and Oceania by STEL, Nagoya University

Kazuo Shiokawa and Yuichi Otsuka

Solar-Terrestrial Environment Laboratory Nagoya University, Japan

The 3rd AOSWA workshop, Fukuoka, Japan, March 3 10:15-10:30, 2015

http://stdb2.stelab.nagoya-u.ac.jp/omti/

Station Name	MLAT	Collaborators	
Resolute Bay, Canada	82.9	SRI International, U. Calgary, U. Electrocommunications	
Tromsoe, Norway	67.1	EISCAT, NIPR	
Athabasca, Canada	61.7	U.Athabasca, U.Calgary	
Magadan, Russia	51.9	IKIR (FEB, RAS)	
Paratunka, Russia	45.8	IKIR (FEB, RAS)	
Rikubetsu, Japan	34.7		
Shigaraki, Japan	25.4	RISH (Kyoto U)	
Sata, Japan	21.2		
Yonaguni/Ishigaki, Japan	14.6	ENRI, NICT	
Haleakara, US	21.3	Kyoto U., Tohoku U.	
Chiang Mai, Thailand	8.9	Chiang Mai U., NICT	
Kototabang, Indonesia	-10.6	LAPAN, RISH	
Darwin, Australia	-22.1	IPS Radio and Space Services	

Nighttime Medium-Scale Traveling Ionospheric Disturbances (MSTIDs)

Kubota et al.(GRL, 2000); Saito et al. (GRL, 2001)

Nighttime MSTID direction (summary)

5.

b)

Full FOV

Half FOV

Equatorward boundary of nighttime middle-latitude MSTIDs by equatorial airglow enhancement.

Narayanan et al. (JGR, 2014)

Nighttime MSTID direction (summary)

Occurrence of southward-moving MSTIDs at Indonesia (MLAT=10S) \rightarrow GW-like features

Fukushima et al. (JGR, 2012)

Fukushima et al. (JGR, 2015)

$$v_{cal} = \frac{\sum_{PN} u_N + \sum_{PS} u_S}{\sum_{PN} + \sum_{PS}}$$

UT	1340	1510	1610	1730	1820	1920
v _{obs} (m/s)	124	124	120	116	112	103
u _{eN} (m/s)		78	82			56
u _{es} (m/s)	121	126	100	84	85	84
Σ _{PN} (S)	3.28	1.92	1.89	2.35	2.47	1.99
Σ _{PS} (S)	4.38	3.16	2.33	1.45	1.13	0.87
v _{cal} (m/s)		108	92			65
v' _{cal} (m/s)		102	91			70

About 60-90% of the eastward bubble velocity can be explained by the F-region dynamo effect.

Fukushima et al. (JGR, 2015)

Plasma bubble disappearance by collision with an LSTID August 8, 2002 ~10:00-2:00 UT Darwin, Australia (630 nm) Sata, Japan (630 nm) Ν Ν

Shiokawa et al. (EPS, 2015)

Ε

Shiokawa et al. (EPS, 2015)

Shiokawa et al. (EPS, 2015)

induction magnetometer

Sakaguchi et al. (JGR, 2008)

VLF/ELF loop antenna

Feb.12, 2012 10:30-10:40UT (02:30-02:40LT) Athabasca, Canada

10-min

Shiokawa et al. (JGR, 2014)

Summary

STEL, Nagoya University have been conducting multi-point observation of airglow (13 stations), geomagnetic pulsations (5 stations) and ELF/VLF radio waves (3 stations) in collaboration with Institutes in Asia and Oceania.

We show some recent results obtained by these network observations, i.e.,

- Nighttime MSTIDs features at middle and low latitudes caused by Perkins/E-F coupling instability and by gravity waves, respectively.
- Conjugate observation of plasma bubble propagation, their disappearance, and a midnight brightness wave, with thermospheric wind data obtained by FPI.
- High correlation of Pc1 pulsation with isolated proton aurora.
- VLF/ELF chorus waves at subauroral latitudes
- Tweek and related D-region height measurements.