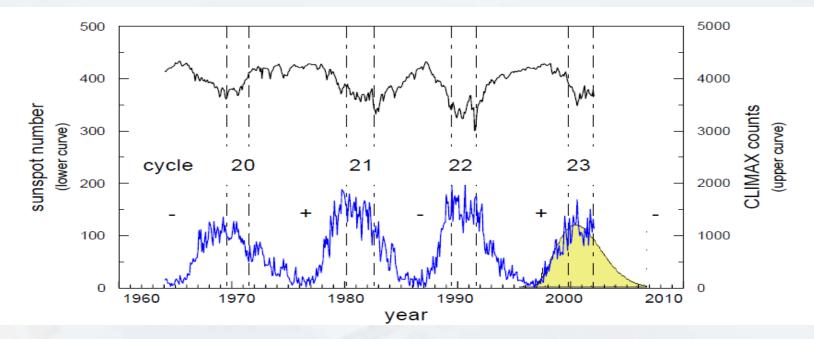
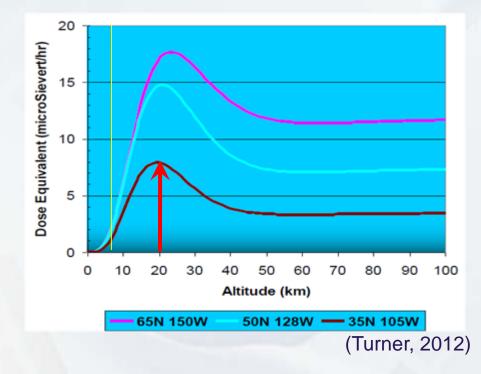
In-situ Measurements of the Cosmic Radiation on the Aircrew over Korean Peninsula

ROKAF Weather Wing Lt. Park Inchun Lee Jaewon, Lee Jaejin

CONTENTS


> Introduction
> Methodology
> Analysis Results

Summary



 Special thanks to KASI and KSWC for their support in this research

- All living creatures are exposed to radiation emitted from a variety of sources. The ionized particles enter the Earth from space as cosmic rays
- ✓ Cosmic radiation is in inverse relationship with solar activity
 - : As solar activity goes down after its peak, a gradual increase of cosmic radiation is expected

- Most of the cosmic radiation is shielded by the atmosphere, so the radiation effect at the surface might be negligible
- ✓ Altitude over 8 km, cosmic radiation dramatically increases (Maximum exposure at Altitude 20 km)

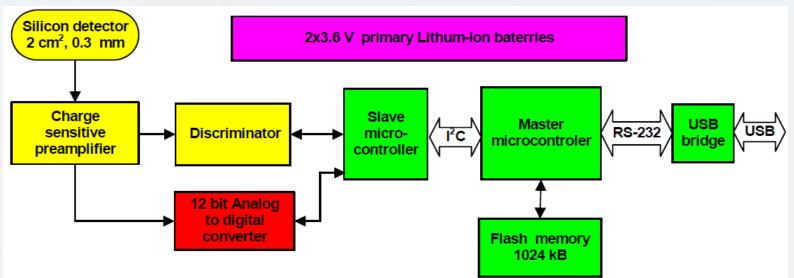
✓ Radiation exposure by occupation type (UNSCEAR 2000report)						
Source	Mining	Uses of radioactive		Nuclear fuel cycle	Air travel(crew)	
		Indus	Medical	Cycle		
Effective dose(mSv/yr)	1~5	0.5	0.3	1 ~ 2	3	

✓ International regulations (ex. ICRP) are established to determine the criteria of the effective dose for the aircrew protection

Division	ICRP	Japan/EU	Korea(Civil air)
Civilian		1 mSv/yr	
Air crew	20 mSv/yr	5~6 mSv/yr	20 mSv/yr

✓ In this research, objective analysis was done on the in-situ cosmic radiation measurements, which were collected by the spectrometers installed in the aircrafts flying over the Korean peninsula.

Methodology


- Cosmic radiation measurement
- Period of measurement : Oct. 2012 ~ Jul.2014 (45 cases)
- Measurements and analysis were done on the data gathered from the spectrometer loaded on aircrafts during each mission flight
- Flight time : 1 ~ 9 hours day and night
- Flight altitude : Altitude according to aircraft types and missions
- * Each group of measurements were done with a fixed route and altitude

Methodology

- ✓ Equipment : Liulin-6K spectrometer
- Manufactured by Bulgarian Solar-Terrestrial Influences Laboratory
- Silicon semiconductor detector
- Energy loss range : 0.04 ~ 20.83 MeV
- Certified as an avionics equipment

Methodology

- ✓ Cosmic radiation exposure modeling program : CARI-6M
- Developed by CAMI(Civil Aerospace Medical Institute, FAA)
- Utilized to calculate the effective dose in civil airline flights
- Input data : departure, waypoint, destination, altitude(~ 87,000 ft)
- Calculated the effective dose using monthly HCP(Helio Centric Potential)
- Similar programs : EPCARD(German), JISCARD(Japan), PCaire(Canada), SIEVERT(France)

Results of Measurement(2012)

✓ Result of measurement 2012 (18 cases)

Altitude(f t)	Date	Total dose(µSv)	Flight time
4,000	11/20	0.27	1h49m
9,000	11/20	0.35	1h51m
12,000	12/4	0.27	1h14m
34,000	10/5	14.93	4h43m
34,000	10/7	16.18	4h48m
34,000	10/12	17.88	4h45m
34,000	11/17	15.68	4h56m
34,000	11/23	13.05	4h52m
34,000	12/1	12.69	4h47m
34,000	12/3	11.51	4h31m
38,000	10/6	17.16	4h45m
38,000	10/13	16.34	4h48m
38,000	10/15	16.83	4h54m
38,000	10/16	16.24	4h40m
38,000	10/17	16.00	4h25m
38,000	10/19	15.59	4h26m
38,000	11/22	13.32	5h07m
38,000	12/2	15.67	4h31m

Average time of cargo flight (Low Altitude) : 1h 38m Total dose : 0.30µSv (0.19µSv/h)
Average time of mission flight (High Altitude) : 4h 44m Total dose : 15.27µSv (3.24µSv/h)
10.2km Dose :14.56µSv (3.05µSv/h)
11.4km Dose :15.89µSv (3.38µSv/h)
→ Large difference (tens of times) based on flight altitude

Results of Measurement(2013)

Rebuit of medsulement 2010 (b				
Altitude(f t)	Date	Total dose(µSv)	Flight time	
34,000	10/20	13.94	4h41m	
34,000	10/22	12.52	3h35m	
34,000	10/25	11.29	4h45m	
34,000	10/28	15.68	4h56m	
38,000	10/21	18.49	4h22m	
38,000	10/23	7.47	2h23m	
38,000	10/24	20.12	4h45m	
38,000	10/25	17.69	4h31m	
38,000	10/29	19.62	4h30m	-

Result of measurement 2013 (9 cases)

Average time of mission flight (High Altitude) : 4h 16m
Total dose : 15.20µSv (3.60µSv/h)
10.2km dose : 13.36µSv (2.72µSv/h)
11.4km dose : 16.68µSv (4.07µSv/h)
→ Missions at 38000 ft are more exposed to cosmic radiation compared to 34000 ft missions.

> High altitude flight pilots, who fly 300~400 hours annually,

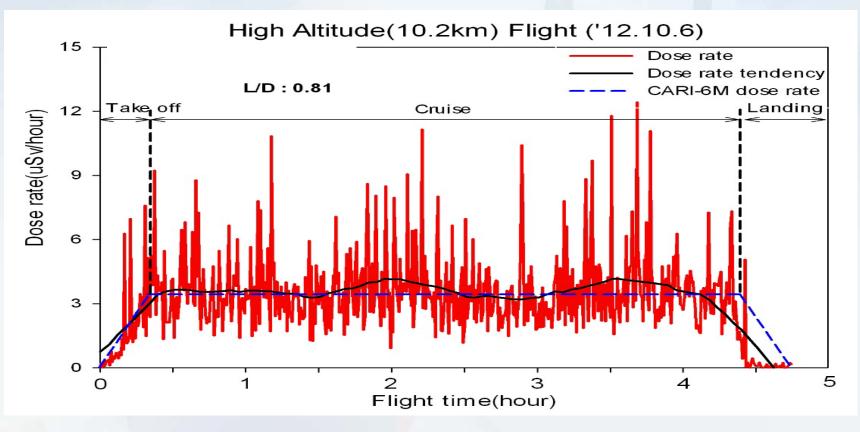
are exposed to cosmic radiation 0.97 ~ 1.44mSv per year.

 \rightarrow Exceed civilian annual regulation of 1mSv

Results of Measurement(2014)

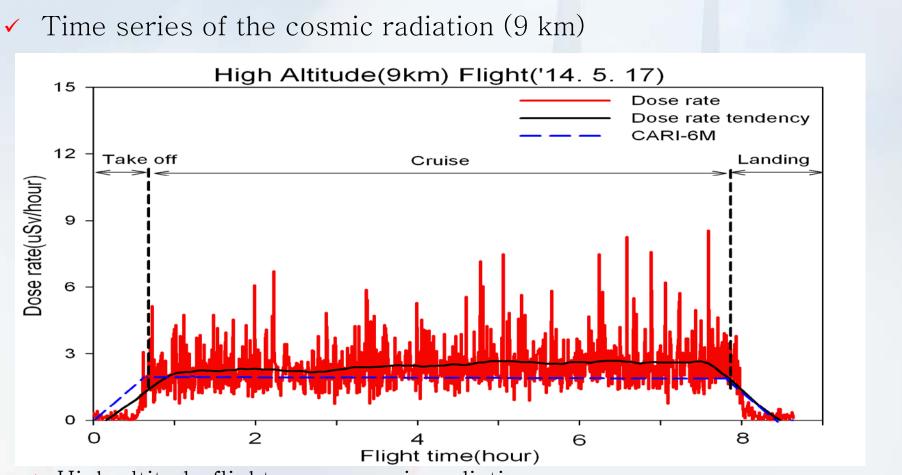
✓ Result of measurement 2014 (18 cases)

Altitude(f t)	Date	Total dose(µSv)	Flight time
30,000	4/25	16.44	8h27m
30,000	5/9	16.06	8h23m
30,000	5/12	16.62	7h31m
30,000	5/17	19.13	8h56m
30,000	5/18	18.45	8h24m
30,000	5/20	16.78	8h17m
30,000	5/21	12.20	6h31m
30,000	5/27	18.94	9h13m
30,000	6/10	16.82	7h22m
30,000	6/11	15.38	7h49m
30,000	6/13	8.18	3h55m
30,000	6/16	17.51	7h02m
30,000	6/20	16.65	8h02m
30,000	6/25	20.66	9h03m
30,000	6/26	11.65	5h05m
30,000	7/3	16.68	8h12m
30,000	7/14	10.79	5h50m
30,000	7/29	16.33	7h58m

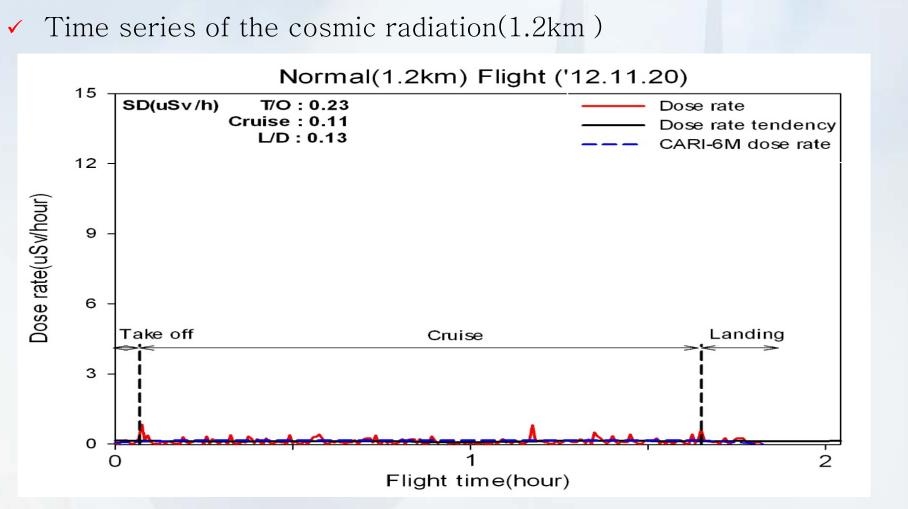

30,000	8/5	12.18	6h00m
30,000	8/21	16.53	7h59m
30,000	8/27	20.44	7h57m
30,000	9/24	15.67	7h59m
30,000	9/26	16.04	7h58m
30,000	9/30	14.31	8h00m

 Average time of mission flight (High Altitude) : 7h 33m
 Average dose: 15.85µSv (2.10µSv/h)

→ Dose rate is sensitive to altitude change

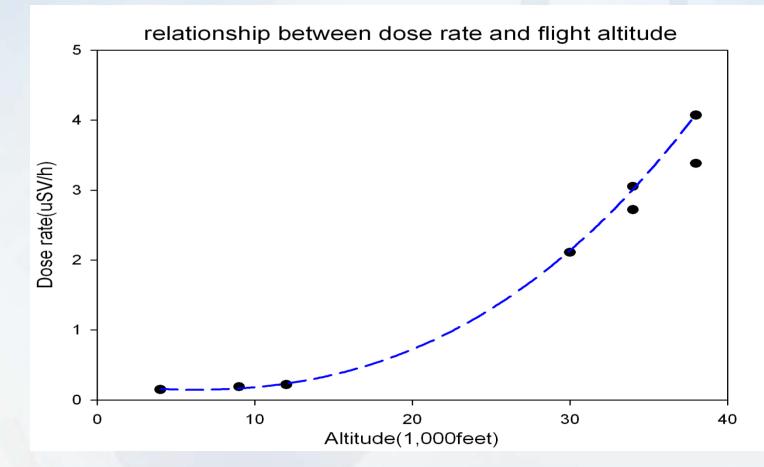

 Considering long annual flight time (about 1000 hours), crews could be exposed to cosmic radiation up to 2mSv

✓ Time series of the cosmic radiation (10.2 km)

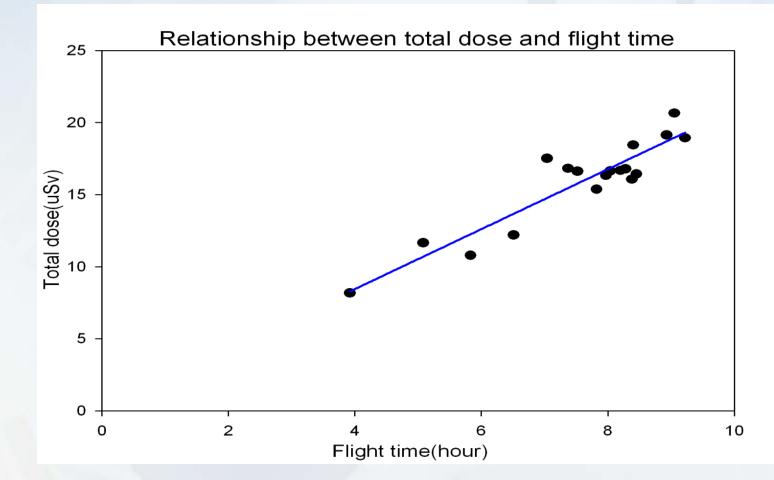

> High altitude flight crew cosmic radiation exposure

→ The effective dose and the dose rate change with each flight phase (take-off, cruise, landing). During take-off and landing, the change is dramatic

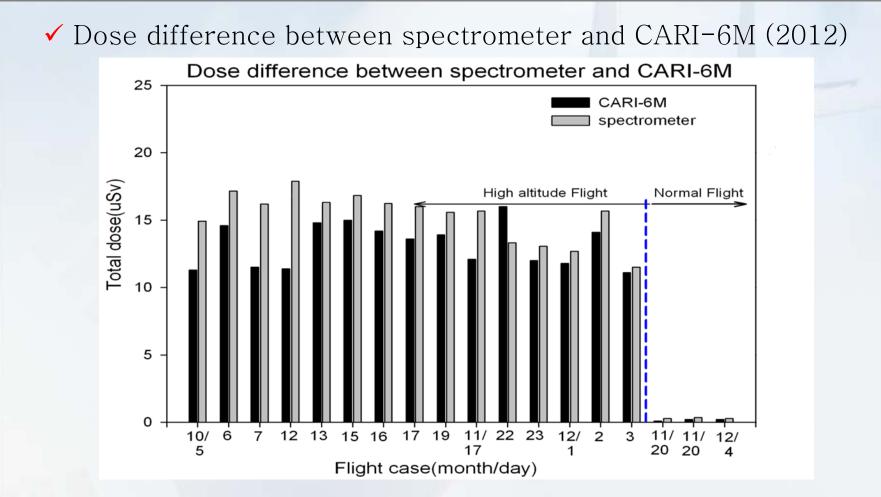
> High altitude flight crew cosmic radiation exposure


→ The effective dose and the dose rate change with each flight phase (take-off, cruise, landing). During take-off and landing, the change is dramatic

Cosmic radiation exposure of cargo crew

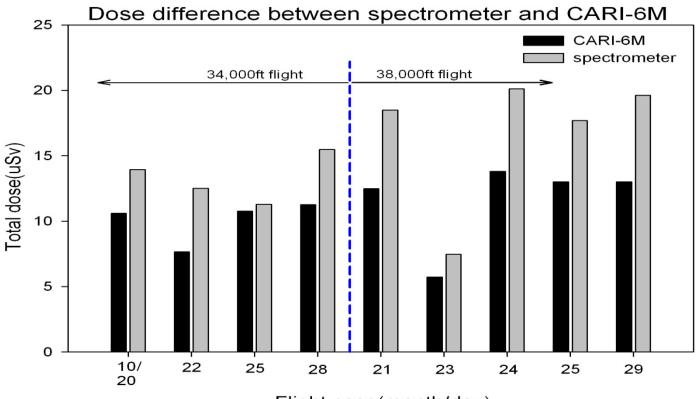

 \rightarrow Almost the same as ground level

Relationship between dose rate and flight altitude



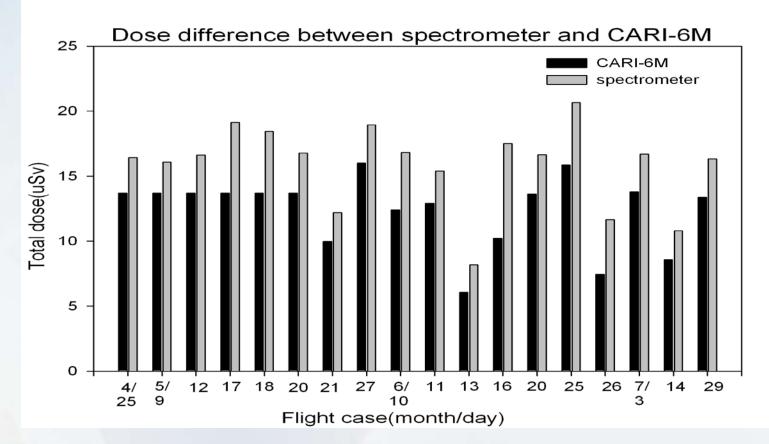
> The effective dose has positive correlation with altitude

✓ Relationship between total dose and flight time (9 km)



> The effective dose has positive correlation with time

 The distribution of measured data is similar to simulated data
 During high-altitude flights in 2012, measured data was higher than simulated data in all except one flight


✓ Dose difference between spectrometer and CARI-6M (2013)

Flight case(month/day)

The distribution of measured data is similar to simulated data
 During high-altitude flights in 2013, measured data was always higher than simulated data.

✓ Dose difference between spectrometer and CARI-6M (2014)

The distribution of measured data is similar to simulated data
During high-altitude flights in 2014, measured data was always higher than simulated data.

Summary

This research showed us that;

above 9 km, the effective dose increases drastically corresponding to flight altitude and flight time
 continuous monitoring, quantitative data analysis, and an effective dose management plan for aircrews are required

Thank you for listening