4-D observation of traveling ionospheric disturbances using a dense GPS receiver array

By

Nicholas Ssessanga, Yong Ha Kim, Eunsol Kim Chungnam National University Dept. of Astronomy and Space Science Daejeon, South Korea

Introduction

Travelling Ionospheric Disturbances (TIDs) are wave-like structures observed in the Earth's plasma density.

□ Signatures in the ionosphere of:

- Atmospheric gravity waves (AGW) due to geomagnetic activity at high latitude, (as a result of Joule heating, Lorentz forces or particle precipitations, .e.g., Valladares et al., 2009; Ding et al., 2007).
- Atmospheric gravity waves propagating from low upper atmosphere (associated with atmospheric tides, tropospheric weather, volcanic explosions, earthquakes, rocket launches).

Classification:

Small-Scale (SS TIDs)

- Period: 1-10 min
- Horizontal wavelength 0.1 to 1 km

Medium-Scale TIDs (MS TIDs)

- velocities from 50 to 300 m/s
- Period: 20 60 min (e.g. Hunsucker, 1982, Tsugawa et al. 2007)
- Horizontal wavelength: < 1000 km.</p>
- They are confined to mid and high-latitude zones (Bruinsma and Forbes, 2008; Mayr et al., 1990).
- □ Large Scale TIDs (LS TIDs)
- ➤ 400 1000 m/s
- Period: > 1 hr
- Order of thousands of kilometers in horizontal scale.

• Focus is on MSTIDs that are characteristic wave phenomenon in the ionospheric F-region at mid-latitudes.

Problem

Most studies have been limited twodimensional imaging (2-D Total Electron Content, TEC, maps that infer information on the horizontal structuring of the electron density)

An example of a 2D TEC map.

Mainly:

- Due to the paucity of Global Positioning System (GPS) receivers and limited projection angles.
- Where, projection angle is the line integral along a given view.

Luckily, Japan has a GPS Earth Observation Network (GEONET) of more than 1000 receivers (with average distance between two neighbouring points being 25-30 km).

Investigation (Tomography)

The possibility of using a MART and Calibrated IRI model to observed TIDs □ With multiple ground stations each being able to "see" 6-8 GPS satellites at time, tomography is possible.

□To do this, we set up a three-dimensional grid of voxels (*i.e. volume* pixels), each bounded in **latitude**, **longitude** and altitude.

Compute the length of each element of a satellite-to-receiver signal propagation path though each intersected voxel.

continued

□The contribution to the line integrals in each voxel is decomposed into a matrix, **A**.

Given the measurements of these line integrals, **m (Slant-TEC)**, the problem becomes one of inverting **A** to solve for the unknown electron concentration, **x**.

Ax = m

However, the inverse problem is ill-posed and ill-conditioned.

To solve the inverse problem we use the MART (Multiplicative Algebraic Reconstruction Technique)

$$x_j^{k+1} = x_j^k * \left(\frac{m_i}{\langle A^i, x^k \rangle}\right)^{\frac{\lambda_k A_j^i}{A_{\max}}}, \quad j = 1, \dots, N.$$

 A_{\max} is the maximum path-pixel intersection length in the grid.

□λ_k is the relaxation parameter and controls the convergence of the algorithm, is bounded between 0 and 1 (Pryse et al., 1998; Raymund et la., 1990).

Advantage: Low memory requirements , non negative electron density values.

□However, MART is sensitive to the initial guess (xo), >>>> IRI-2012 model

Calibrated IRI-2012 (Cal-IRI-2012)

The most recent version, IRI-2012, is used.

- Two input indices, Sun Spot number (SSN) and Ionospheric index (IG12), are adjusted in relation to derived GPS vertical TEC (VTEC).
- Only a few stations within the grid are need to reach the optimal solution.

Algorithm

□Percentage improvement = 50.5%

*Regional optimization of IRI-2012 output (TEC, foF2) using derived GPS-TEC (Ssessanga Nicholas and Yong Ha Kim., In press)

Average

1.4372

2.9030

Give use Cal-IRI-2012 (Xo) as the initial guess.

Hence:

Quick convergence

A better solutions for resolving small scale structures.

Setup

Grid size Latitude: 20° N : 1° : 50° N Longitude: 120° E : 1° : 150° E Height: 100: 10 :1000 Km Time resolution: (15 min) utilised stations: 700

A plot of utilised stations

Day of Analysis

2D dTEC Maps, 14-16, July 2012

- The selection was done through a **visual examination** of these sequences of maps. If there were TIDs passing by, there would be regularly moving **band-like structures**.
- The perturbation components of TEC values were derived by subtracting a trend of the TEC values that is a 30-min running average.
- □ The data from satellite receiver paths with low elevation angles below 30° were not included. (using a program a from NICT)

Results

Spatial representation

□ Slice a vertical plane with most number of data points

Smooth Ionosphere - Cal-IRI

2012

Results from algorithm

15 minute resolution , spatial representation
The ionosphere is quite moderately modulated by the TIDs

In local time = UT + 9

Spatial period ≈ 333.6 Km

Take FFT of the two signals and determine average period

□ Medium-Scale TIDs (MS TIDs)

- >velocities from 50 to 300 m/s (≈ 173 m/s)
- Period: 20 60 min (≈ 49 min)
- ➢ Horizontal wavelength: < 1000 km (≈ 333.6 Km)</p>

- Summary:
- This investigative procedure has provided promising results,
- that a dense network of GPS receivers could be used to infer further information about the vertical structure of TIDs.

THANKS