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SRI International

* Private, non-profit research institute (staff > 2000)
-- contract research; project oriented

* Center for Geospace Studies (staff ~ 20)

e Current Projects

-- Build, deploy and operate incoherent-scatter
radars (Resolute Bay, Sondrestrom, Poker Flat,
Arecibo)

--lonospheric, magnetospheric research

» Personal interest: Physical processes that lead to
the structuring of ionospheric plasma



Some Background

Quality of radio signals is degraded while propagating
through ionospheric plasma structure

Plasma structure in nighttime equatorial F layer is
referred to as equatorial spread F (ESF)

Propagation effects most severe within plasma-depleted
regions, called equatorial plasma bubbles (EPBS)

Mitigation difficult; avoidance is most viable strategy
Occurrence of ESF/EPBs can vary dramatically from
day-to-day

Reliable methods for short-term forecasting have yet to
be developed — A SPACE-WEATHER CONCERN



How to Best Address the Day-to-Day
Variability Problem

e Construct working hypothesis

« Test hypothesis with well-designed experiments,
with comparisons to theories or computer
simulation results

 Working hypothesis:

Large-scale wave structure (LSWS) controls
when and where ESF/EPBs develop

Main drivers: (1) post-sunset rise (PSSR) of F
layer and (2) eastward neutral wind
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Properties of LSWS

Very little is known about LSWS
-- Zonal wavelength ~ 400 km
-- Upwelling amplitude can exceed 100 km

Most of information about upwelling properties
have been obtained with ALTAIR, a fully-
steerable incoherent-scatter radar

But, ALTAIR rarely available for basic research

Lack of knowledge about LSWS is a major
reason why we have not yet been able to solve
the day-to-day variability problem



Serious Obstacle to LSWS Measurement

o Upwellings are spatial structures, virtually
stationary during their growth phase (PSSR)

 Hence, sensors that use temporal variation to
Infer spatial structure, by assuming zonal drift
cannot be used

* |In lieu of ALTAIR, limited information have been
extracted from ionogram signatures, total
electron content (TEC) derived from beacon
signals transmitted by equatorial-orbiting
satellite (C/INOFS), HF transequatorial
propagation (TEP)



Sketch of Working Hypothesis
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e LSWS grows in amplitude such that each ‘upwelling” becomes a regional center
within which ESF develops

R.T. Tsunoda, ‘Upwelling, A unit of disturbance in equatorial spread F, Prog.
Earth, Planet. Sci., in review, 2015.



lonogram Signatures of Bottomside Patches
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Swooper: Another Bottomside Patch Signature
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e Doppler shift of continuous-wave radio signals versus UT
« Sequence of events: PSSR, arrival of swoopers” from west
« Asymmetry prevents detection of signatures to east of station
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EPB Clusters: In Situ Measurements
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AE-E ion-density measurements
First pass: LSWS without EPBs
Second pass: Filling of upwellings with EPBs
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Clear Example of Upwelling Filled with EPBs
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Sketch of Working Hypothesis
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e LSWS grows in amplitude and each upwelling becomes a regional center within
which ESF develops

R.T. Tsunoda, ‘Upwelling, A unit of disturbance in equatorial spread F,” Prog.
Earth, Planet. Sci., in review, 2015.



Indo-Asian-Pacific Region: Ideal Testbed

Uniform geometry
over extended (75°)
longitude sector

Sensor network
Includes zonal chain
of 6-8 ionosondes

Other sensors
provide description
of LSWS (GRBR
network, all-sky
imagers, GPS
network, radars, HF-
TEP experiment)
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One Useful Experiment

Determine the longitudinal correlation in
behavior of LSWS, PSSR, and ESF/EPB
development

On a given night, compare the above
development process at longitudes spaced 1-2
hrs in LT with “expected” behavior

Do LSWS properties explain observations?

Can we separate contributions from PSSR and
LSWS?



New Opportunity

Formosat-7//COSMIC-2

Constellation Observing System for
Meteorology, lonosphere, and Climate
(COSMIC) — total of 12 micro-satellites

First six will be launched in 24° inclination
orbit; will carry radio beacons and VIDI
(velocity, ion density, and irregularities)

Launch: ~ May 2016; SpaceX Falcon-Heavy
rocket; from Cape Canaveral, Florida
(28.49°N, 80.58°W), or Brownsville, Texas
(25.93°N, 97.48°W)



Tandem Beacon Explorer (TBEX)

Two CubeSats will be flown in near-identical
orbits; each will carry a tri-frequency beacon

150, 400, 1067 MHz

Measurements: Total electron content (TEC),
amplitude scintillations

Objective: Description of LSWS and ESF with
higher temporal resoluton

To be launched with six COSMIC-2 satellites
In low-inclination orbits (~ May 2016)

-- COSMIC-2: lon-drift meter, radio beacons




TBEX

Tandem Beacon
Explorer

Two “3U” CubeSats in
near-identical orbits

Orbital inclination ~ 28°
600 (400) km, apogee
(perigee)

Each: Radio beacons at

150, 400, 1067 MHz
(identical to C/NOFS)




Coordinated Field Campaigns Using
Instrument Clusters

Indo-Asian-Pacific Network

Conduct campaigns during ESF season, moon-
down conditions (optics), nights of favorable
number of satellite passes

Obtain comprehensive description of LSWS and
ESF/EPBs

Data analysis, model simulations, etc., for field
campaign periods
Present results at an AOSWA workshop



Possible Collaborations

e NICT

-- HF-TEP, ionosondes

* RISH, Kyoto University

-- GRBR (GNU Radio Beacon Receiver) network
-- Equatorial Atmosphere Radar (EAR)
e STEL, Nagoya University

-- 630 nm all-sky imagers

-- 30 MHz radar (at EAR)

e UKM

-- GRBRs in Malaysia

-- GPS receiver network in Malaysia

e LAPAN

-- GRBRs, ionosondes in Indonesia
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