Ionosphere Equivalent Conversion Methods from Oblique to Vertical using Oblique Measurement Data


<u>Cheol-Oh Jeong</u>¹ (e-mail : cojeong@etri.re.kr), Jin-Ho Jo¹

¹ Electronics and Telecommunications Research Institute

March 02-05, 2015

Background (1/2)

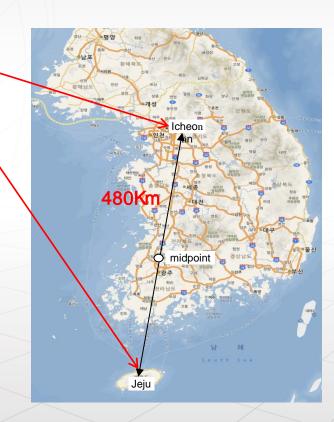
- **Korean Space Weather Center(KSWC) of Radio Research Agency (RRA)** has function to forecast the space weather like space weather indicators in radio range.
- **KSWC is performing routine observation of ionosphere using 2 digisonde systems deployed at Jeju site & Ichon site.**
 - Delivers daily ionosphere status information through homepage, e-mail, etc. to users.
- □ As a part of KSWC's plan, ionosphere measuring and analysis project was started since January 2013.
 - to checkup and verify oblique sound mesearing function between two digisondes
 - to make conversion technology from oblique ionogram data to converted vertical parameters at mid point of between two digisondes

Background (2/2)

- ☐ The project was performed by ETRI funded by KSWC for Developing Ionosphere Measuring and Analysis Technology
 - The purposes of this project were as follows ;
 - to re-check & verify oblique function of existing Digisonde systems
 - ➤ to develop SW for extracting ionogram data from raw data (RSF file)
 - > to develop **algorithm for extracting ionogram trace data** from ionogram data
 - to develop algorithm for converting ionogram trace data from Oblique to Vertical
 - to develop algorithm for extracting ionospheric N-profile & parameters from converted vertical ionogram trace data
 - ➢ to implement SW

Outline of lonosonde in Korea (1/2)

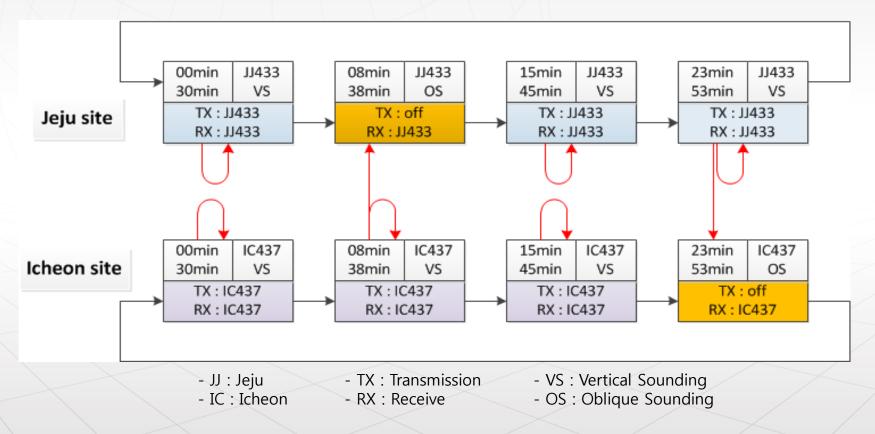
- Ionosonde deployed at KSWC in Korea
 - Fully digital ionosonde made by LDI, model DPS-4D
 * LDI : Lowell Digisonde International



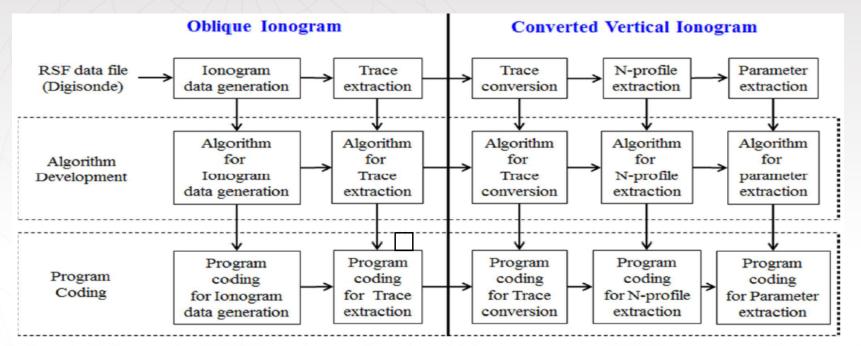
Ionosonde sites in Korea

- North site at Icheon (37.1°N, 127.5°E)
- South site at Jeju (33.4°N, 126.3°E)
 X distance between two site : 480Km

• Oblique sounding in Korea


- Frequency range 1MHz ~ 16MHz
- Frequency step 25kHz
- Sounding interval 30 minute

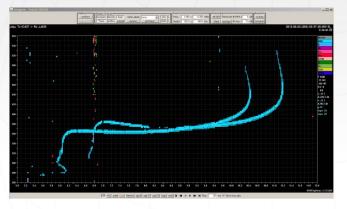
Outline of lonosonde System in Korea (2/2)


Measurement schedule

- Vertical sounding measurement : 8 minutes interval
- Oblique sounding measurement : 30 minutes interval
- Total 4 oblique ionogram are produced every hour

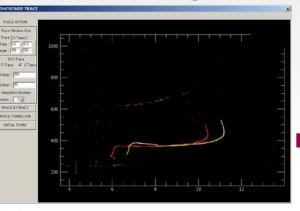
Development How (1/2)

• ETRI divided this project into 5 tasks as follows;



- Generation oblique ionogram data from RSF data file of Digisonde
 * RSF : Routine Scientific Format
- Oblique trace data extraction from the oblique sounding ionogram
- Trace conversion from oblique to vertical
- Get electron density profile from the converted vertical ionogram
- Extraction ionospheric parameters from electron density
- This project was performed by ETRI with IPS & LDI and SELab support

Development How (2/2)


Concept of O2V Ionogram Conversion Procedure

Oblique Ionogram (measured)

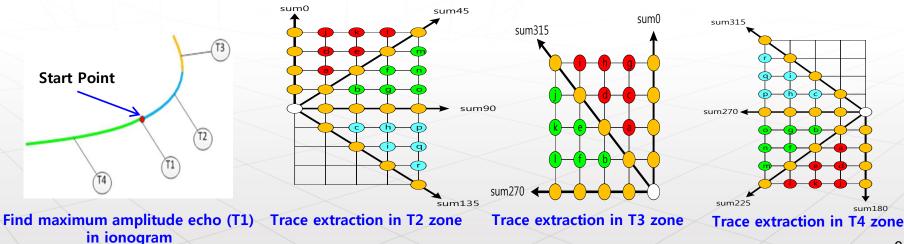
Trace extraction

Extract Oblique Ionogram Trace

O to V conversion

N-profile & Parameter extraction

Ionosperic N-profile & parameter


Vertical Ionogram Trace (converted)

Trace Extraction (1/2)

- Vector tacking algorithm
 - is for trace extraction from the scattered data in the ionogram
 - calculate 8 direction amplitude sum of echo signal up to 4 echoes in each270 (000)
 directions (T1)
 - Move trace coordination to direction of maximum amplitude sum (T2, T3, T_{4}

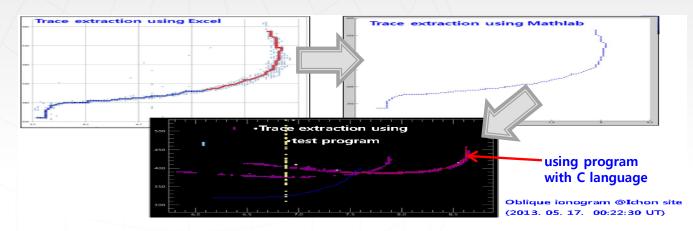
• 3 steps of trace extraction

- Find maximum amplitude echo signal in the ionogram, that will be T1
- Trace extraction of right part of ionogram from the maximum amplitude point by the vector tracking algorithm (T2, T3)
- Trace extraction of left part of ionogram from the maximum amplitude point by the vector tracking algorithm (T4)

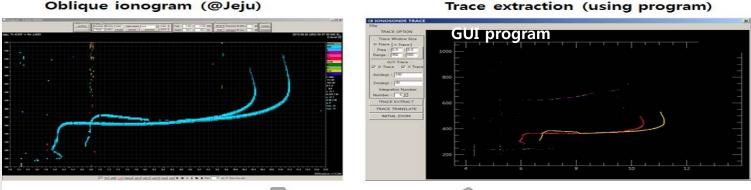
sum0

sum180

sum45


sum135

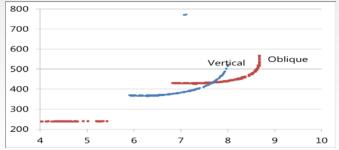
sum315


sum225

Trace Extraction (2/2)

- Validation Process of trace extraction
 - 3 steps development were performed
 - Algorithm verify using Excel \rightarrow Algorithm verify using Matlab \rightarrow S/W program

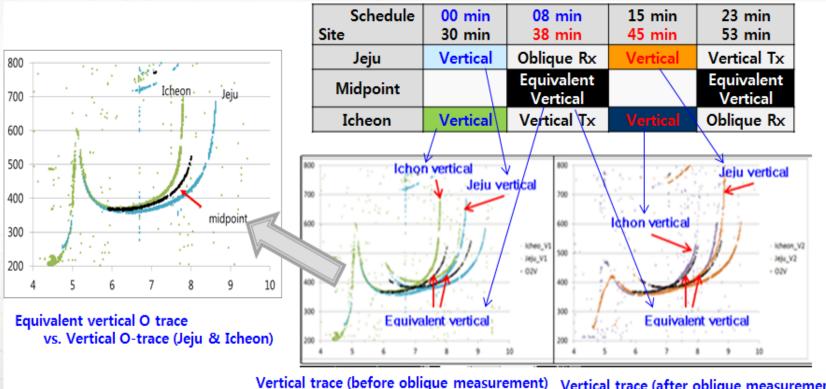
Trend of extraction trace is seemed to be similar to oblique ionogram


Trace extraction (using program)

Trace extraction

Trace Conversion from Oto V (1/2)

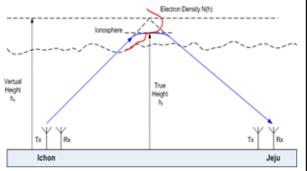
- Equivalent conversion theory was applied to trace conversion from O to V
- The vertical frequency (f_v) and virtual height (h'_v) can be derived from the oblique frequency (f_{ob}) and virtual path (P'_{ob})


$$f_v = \frac{f_{ob}}{1.002} \cos\left(\sin^{-1}\left(\frac{428.8748}{P'_{ob}}\right)\right)$$
$$\dot{h_v} = -3.6097 + \frac{214.4374}{\tan\left(\sin^{-1}\left(\frac{428.8748}{P'_{ob}}\right)\right)}$$

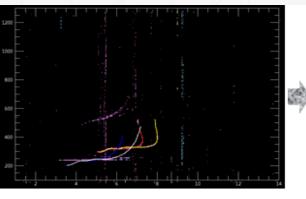
- Validation of Trace Conversion
 - Compare vertical ionogram between measured and converted was impossible because there was no digisonde at mid point and there was not available vertical measured ionogram
 - Alternative validation method was considered that is compare converted vertical ionogram to measured vertical ionogram before and after oblique sounding measurement
 - Converted vertical ionogram at midpoint can be compared with measured vertical ionograms at TX and RX station for the validation
 - If converted vertical ionogram at midpoint is located between the vertical ionograms of TX and RX station, conversion algorithm seems to be
 Breit-Tuve [1926], Martyn's equivalent path theorem [1935]
 Smith [1970], Rao [1973], Reilly [1985, 1989], Kotovich [2006]

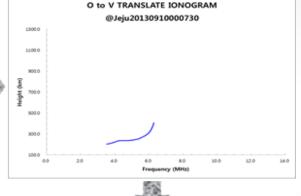
Trace Conversion from Oto V (2/2)

- ✤ Ionogram Trace Conversion verification
 - \checkmark O to V conversion verification method
 - Compare converted vertical ionogram to measured vertical ionogram of Jeju and Ichon site digisonde (450Km apart between 2 sites)
 - O to V conversion verification (using 13 ionograms @Ichon site, 2013.05.27)

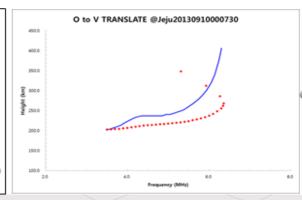


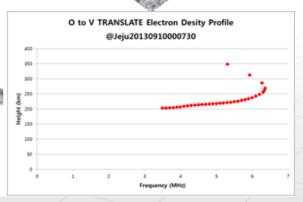
vs. Equivalent trace


Vertical trace (after oblique measurement) vs. Equivalent trace


Bectron Density & Parameter Extraction

- POLAN algorithm has adopted to extract electron density and ionospheric parameters
- Validation of POLAN algorithm
 - By comparing with ARTIST of Digisonde for same measured vertical ionogram data




Measured at Jeju (2013.09.10 00:07:30 UT)

Chapman Laye	ю, E + Р		FH-1.20 (0io 20.0	Amo	de 0.0	Valy	0.00 List 0)	
(A) Accurate data.			tart = -1.00	0						
input data										
3.50 202.6	3.60	205.2	3.70 209.	3.80	213.3	3.90	220.3	4.00 223	.7 4.10	230.5
4.20 233.9	4.30	237.3	4.40 237.3	4.50	237.3	4,60	237.3	4.70 237	3 4.80	237.3
4.90 240.6	5.00	240.6	5.10 243.	5.20	247.2	5.30	250.5	5,40 253	8 5.50	263.5
5.60 269.8	5.70	279.3	5.80 288.	5.90	301.0	6.00	319.1	6.10 340	0 6.20	377.7
6.30 405.2	0.00	0.0								
PEAK 6.357	(h0.256)) MHz.	Height 268.	2 (1 4.9)	km.	ScaleH	49.3 (h 7.1) km 🛛	labT 52.0	0 km
Real Heights										
3.50 202.6	3.60	203.0	3.70 203.	5 3.80	204.4	3.90	205.5	4.00 205	8 4.10	208.3
4.20 209.8	4.30	211.3	4,40 212.5	5 4.50	213.4	4,60	214.3	4,70 215	.0 4.80	215.8
4.90 216.7	5.00	217.5	5.10 218.	5.20	219.6	5.30	220.7	5.40 221	9 5.50	223.7
5.60 225.7	5.70	228.0	5.80 230.0	5.90	233.6	6.00	237.2	6.10 242	0 6.20	248.0
6.30 255.5	6.34	261.9	6.36 268.2	8.27	285.8	5.93	312.0	5.31 348	2 0.26	4.9
260.48 49.3										
Coefficients Q	9									
15.00	5.80	230.57	7 6.00	28.6	2 1	6.64	-76.3	7 773.27	-1417.15	5 766.53
0.34	6.23	6.38	268.20	49.3	2 -6	9.00				

Summary

- This project had been completed end of 2013
 - Oblique sounding measurement data between Jeju and Icheon stations was used
 - To build sw program on server in KSWC was completed
 - Trace extraction from the oblique measured ionogram data
 - Conversion from oblique to vertical ionogram trace
 - Extraction of electron density & ionospheric parameters from converted vertical ionogram data
- Future Works
 - KSWC has a plan to perform 2nd phase of ionosphere measuring and analysis project from this year with domestic institute and company
 - to upgrade the O2V conversion SW algorithm developed in 2013 and the SW to be user friendly more
 - to perform long distance (around 1,000Km) O2V conversion algorithm development to measure ionosphere status information above sea between NICT and KSWC
 - to install new ionosonde receiving system only for receiving the signal from NICT's new ionosonde

