
Characteristics of Four SPE Classes according to onset timing and proton acceleration pattern

R.-S. Kim¹, K.-S. Cho¹, J. Lee², S.-C. Bong¹, and Y.-D. Park¹ ¹Korea Astronomy and Space Science Institute ²Chungnam National University, Korea

A refined classification of SPEs (Kim et al., 2015, JGR)

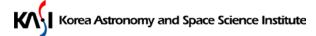
- Data and methods
 - 42 SPEs observed with SOHO/ERNE multi-energy channel detector from 1997 to 2012
 - Velocity dispersion analysis: estimation of the SPE onset times at the solar vicinity
 - Onset time comparison: SPEs, and associated flares, CMEs, and type II radio bursts.

A refined classification of SPEs (Kim et al., 2015, JGR)

- Main result
 - SPE classification by two criteria of
 - SPE onset timing relative to flare peak time
 - Energy-dependent proton flux enhancement $(T_H T_L)$

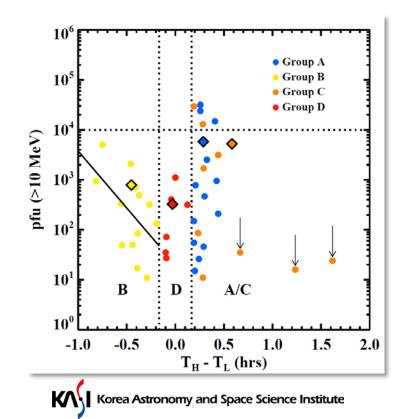
Table 2. Characteristics of Four SPE Groups											
			Acceleration		Energy Spectrum						
Group	Event #	Association	Direction	T _H – T _L (Average)	Dominant Energy Band	Enhancement					
А	13 (31%)	Flare	$Low \to High$	17 min	Low and Middle	~ 10 ⁴					
В	13 (31%)	CME	$High \to Low$	-26 min	High	> 10 ²					
С	9 (21%)	CME	$Low \to High$	35 min	Low	$\sim 10^3$					
D	7 (17%)	CME	Simultaneous	–1.8 min	Middle and High $\sim 10^2$						

- Group A
 - Proton flux increases during the flare X-ray intensity is increasing.
 - Flux enhancements starting from the lower energy
 - Large flux enhancements occur in a short time
- Groups B and C
 - Well coincident onsets with the first appearance of CMEs in LASCO FOV.
 - Relatively weak and slow flux enhancements
- Group D
 - Immediate flux enhancement in all energy channels within ~2 min.

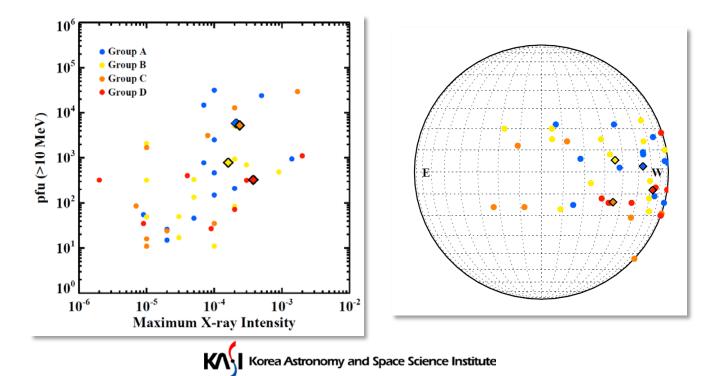


Korea Astronomy and Space Science Institute

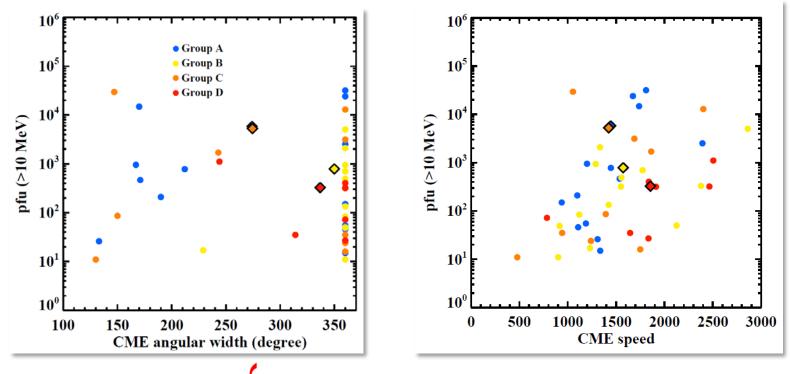
Characteristics of four SPE classes


- Are there any typical characteristics of associated events and acceleration sites in each group?
 - SPE: proton flux and (T_H-T_L)
 - Flare: X-ray intensity and longitude
 - CME: angular width and speed
 - Acceleration Heights of SPE and type II radio burst

Characteristics		Group A	Group B	Group C	Group D	Total	CC with SPE
SPE	Proton Flux (pfu)	5824	788	5268	327	3230	
SI L	$T_H - T_L$ (hrs)	17	-27	35	-2	4	0.83
Flare	X-ray Int. (10^4)	2.11	1.61	2.37	3.77	2.29	-0.35
rlare	Longitude (W)	53	36	35	62	45	-0.21
CME	Angular Width	274	350	274	337	308	-0.98
CME	Speed (km s^{-1})	1444	1573	1423	1855	1548	-0.84
$H_{aight}(P)$	SPE Onset	0.70	5.74	6.05	5.35	4.18	-0.56
Height (R_s)	Type II Onset	3.85	2.95	4.28	5.73	3.98	-0.21

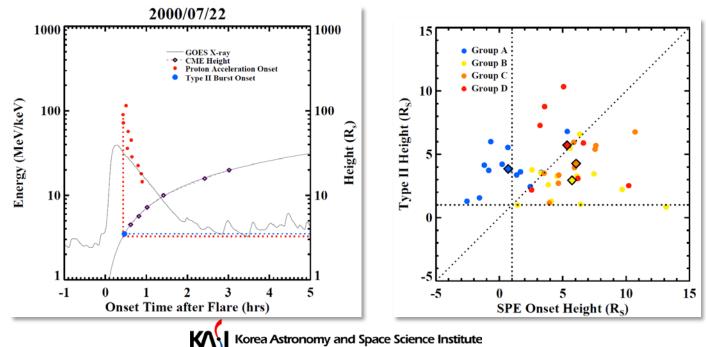

SPE intensity and the onset time difference, $T_H - T_L$

- $T_H T_L$: Onset time difference between the highest and the lowest energy channels
 - $T_H T_L > 0$: Acceleration started first in the lower energy channel and later in higher energy
 - 5 strongest SPEs above 10⁴ pfu have positive values and are classified into groups A or C.
 - Extended duration events: the exceptional 3 events of group C show very weak flux enhancements.

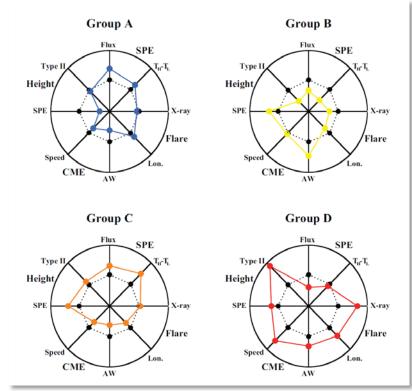

Associated Flare

- Flare intensity
 - Mean values of X-ray intensity is the strongest for group D and the weakest for group B.
 - \rightarrow It is hard to find any strong group dependence on the X-ray intensity.
- Flare location
 - Groups A and D have flaring sites close to the western limb.
 - \rightarrow Relatively short intervals between high and low energy channels, $T_H T_L$
 - Groups B and C show wider distribution of flaring sites.
 - → This tendency confirms that flare associated SPEs are relatively more connected from the foot-point of the interplanetary (IP) magnetic field line to the spacecraft.

Associated CME


- Angular width
 - Groups B and D: most of them are associated with full halo CMEs (mean=350° and 337°)
 - Groups A and C: mean=274°
 - \rightarrow Even the partial halo CMEs can accelerate protons under the certain conditions.
 - \rightarrow Or flare association? : acceleration pattern starts from the lower energy channel.
- Speed
 - Mean speed for group D is the fastest among all events with the value of 1855 km/s, however, the distribution seems to be roughly scattered.

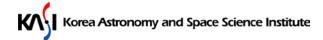
Korea Astronomy and Space Science Institute


Acceleration Heights

- H_p and H_e
 - Heights of CME front edge at the onset times of proton acceleration (H_p) and type II burst (H_e) based on the extrapolation of LASCO observation.
- Only for group A
 - H_p is lower than 1 Rs and $H_p < H_e$.
 - $H_p < 1 \rightarrow$ the event might have no relation with CME.
- The other events in groups B, C, and D
 - H_e is increasing according to the groups, however H_p is not.
 - SPEs in groups B and C are located beneath the line.
 - \rightarrow Proton acceleration follows after the electron acceleration.

Typical Characteristics of Groups

- Group A
 - Strong SPE flux in spite of week X-ray intensity.
 - Its CME properties of speed and angular width are also weaker than average values.
 - It is clear that those events are associated with flares since their low acceleration height and western biased longitudes.
- Group B
 - CME biased properties weak flare and SPE intensities, but wide angular width and fast speed with higher proton acceleration site and wider longitude of flaring site.
- Group C
 - Strong SPE intensity in spite of weak flare and CME.
- Group D
 - Association with very strong flares and CMEs.
 - Acceleration sites of proton and electron are relatively higher.
 - However the proton intensity is very weak.



Summary

If the proton acceleration starts from a lower energy (Group A and C),

- → A SPE has a higher chance to be a strong event (> 5000 pfu) even if the associated flare and CME are not so strong.
- Group A: acceleration sites are very low (~1 Rs) and close to the western limb.
- Group C: relatively higher (mean=6.05 Rs) and wider acceleration sites.
- When the proton acceleration starts from the higher energy (Group B),
 - → A SPE tends to be a relatively weak event (< 1000 pfu), in spite of its associated CME is relatively stronger than previous group.
- SPEs with simultaneous acceleration in whole energy range within 10 minutes (Group D)
 - \rightarrow Acceleration heights are very close to the locations of type II radio bursts.
 - \rightarrow Weakest proton flux (mean=327 pfu) in spite of strong related eruptions.

