Paper: SCT1.9
Slant TEC gradient analysis during 12-13 September, 2014

Sarawoot Rungraengwajiaka¹, Assoc. Dr. Pornchai Supnithi¹
Prasert Kenpankho¹, Dr. Susumu Saito², Nattapong Siangawasdi³,
Dr. Apithep Saekow⁴

¹Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Thailand
²Electronic Navigation Research Institute (ENRI), Japan
³Aeronautical Radio of Thailand (AEROTHAI), Thailand
⁴Stamford International University, Thailand
Outline

• Ionospheric delay gradient effects on Ground-Based Augmentation System (GBAS)
• Experimental Setup
• Results and Discussions
• Conclusions
Total Electron Content (TEC)

- The ionosphere is an ionized part of the atmosphere consisting of electrons and ions.
- It is ionized due to the solar radiation and depends on (Locations: latitude, longitude, Local time and seasons, and Solar activities (sunspot number, solar storm, etc.).

Total Electron Content (TEC) on the Slant path (STEC)

\[\text{STEC} = \int_{s} N_e \, ds \]

TEC Unit (TECU)
\(10^{16} \text{ electrons/m}^2\)

- \(N_e\) : Electron density (electrons/m\(^3\))
- \(S\) : Distance along the propagation path
GPS-Derived TEC

- **Slant TEC (STEC)** is derived by differencing the pseudo ranges (P_1 and P_2) or the phases ($L1$ and $L2$) of the two frequencies.

 \[
 \text{STEC} = \frac{2(f_1 f_2)^2}{k(f_1^2 - f_2^2)} \left(L_1 \lambda_1 - L_2 \lambda_2 \right)
 \]

 \[
 \text{STEC} = \frac{2(f_1 f_2)^2}{k(f_1^2 - f_2^2)} \left(P_2 - P_1 \right)
 \]

 \[f_1 = 1575.42 \text{ MHz}, \]
 \[f_2 = 1227.60 \text{ MHz} \]
 \[\lambda_1 = 0.1904 \text{ m}, \]
 \[\lambda_2 = 0.2444 \text{ m} \]
 \[k = 80.62 \text{ (m}^3/\text{s}^2) \]

 [Blewitt, 1990]

- **Vertical TEC (VTEC)** can be computed from the STEC value and the zenith angle.

 \[VTEC = STEC \cdot \cos(z) \]

 [Tsugawa, T., AGU, 2010]
The satellite bias or differential code bias can be use data from the International GNSS Service (IGS).

(ftp://ftp.unibe.ch/aiub/ CODE/)

\[V_{\text{TEC}} = (\text{STEC} - b_s - b_r) \cdot \cos \chi \]
STEC (removed biases)

![Graphs of STEC (STFD, KMITL, AERO) over time (UTC)]
VTEC (removed biases)
The GBAS processor calculates the pseudorange error (e) of each GPS satellite.

$$e = c_1 - d$$

The augmentation information (e) is then broadcast to the approaching airplanes.

The pseudorange errors are assumed to be the same in the nearby area.

The coverage area is about 40-60 km around the airport.
Ionospheric Delay Gradients with GBAS

• The reference stations provide the differential corrections and integrity information to the receiver that are equipped in the aircraft in the nearby area.

• However, the ionospheric irregularities can cause the error of the differential correction information that is broadcast to the aircraft.

• For the GAST-D (GBAS Approach Service Type D), the error of differential corrections shall be less than 1.5 m within 5 km of the runway threshold (300 mm/km).
Ionospheric effects to GBAS

Simplified ionosphere wave front model

- Front Slope or “Ionospheric delay gradient”
- Causes of Ionospheric delay gradient,
 1. Due to the physical ionospheric separation between aircraft and reference station.
 2. Due to the ionospheric irregularities (plasma bubbles, SED).
- Q: How large of the ionospheric delay gradient in the low latitude regions can be?

In this study, we investigate on the ionospheric delay gradient associated with plasma bubbles in Thailand, which is located in low-latitude region.
This extreme event stimulate the ionospheric delay gradient research in various regions.
Ionospheric effects to GBAS

The ICAO has recently realized the impact of this issue and recommended each country to investigate ionospheric delay gradient in that region.

- Plasma bubble frequently occurs in low-latitude region after sunset, and more occurrence during high solar activity period.
- This phenomena can cause ionospheric delay gradient and also scintillation, which degrades the GBAS performance.
Short baseline experiments

• Short baseline experiment needs to be carried out to monitor the ionospheric delay gradients near Suvarnabhumi international airport.

• Three dual-frequency GPS receivers have been installed as part of a cooperation project of

 1. King Mongkut’s Institute of Technology Ladkrabang (KMITL)
 2. Electronic Navigation Research Institute (ENRI), Japan
 3. Aeronautical Radio of Thailand Ltd. (AEROTHAI)
 4. Stamford International University

• This project started July 2011.
Experimental Setup

The dual-frequency GPS receivers collect the pseudorange and the carrier phase at 1-Hz frequency.

The raw GPS data (binary) are sent to the data server at every 1 hour.

The raw GPS data are converted into RINEX (Receiver Independent Exchange) format (ASCII).
Ionospheric delay gradient calculation

Single difference method

$\text{STEC}_{1\text{adj}_1}^k = \text{STEC}_1^k + B_S^K + B_{R_1}$

$\text{STEC}_{2\text{adj}_2}^k = \text{STEC}_2^k + B_S^K + B_{R_2}$

$d\text{STEC}_1^k = \text{STEC}_{1\text{adj}_1}^k - \text{STEC}_{1\text{adj}_2}^k$

$= (\text{STEC}_1^k - \text{STEC}_2^k) + (b_{R1} - b_{R2})$
Ionospheric delay gradient calculation

Ionospheric delay gradient (mm/km)

\[\nabla I(t) = \frac{40.3}{f^2} \left(\frac{STEC_1^k(t) - STEC_2^k(t)}{d} \right) \]
Dst Index

August 2014

Dst (Real-Time)

[Created at 2014-11-30 15:05UT]
In order to detect the ionospheric irregularities, we use the rate of TEC change index or ROTI.

\[
ROT(i) = STEC(i + 1) - STEC(i)
\]

\[
ROT = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (ROT(i) - \overline{ROT})^2}
\]

• The ROTI is defined by Standard deviation of rate of TEC change with 5-minute window.

Example ROTI

Quiet Condition

Irregularities

SUNSET

MIDNIGHT
Dst Index
PRN21, 12 Sept, 2014

KMIT on 12th Sep. 2014

STEC (TECU)

Time (UTC)

STEC KMIT station on 12th Sep. 2014

ROTI

Time (UTC)

STFD station on 12th Sep. 2014

ROTI

Time (UTC)
12 Sept, 2014

PRN 21

KMITL

STFD

Gradient (mm/km)

94 mm/km
12 Sept, 2014

Ionospheric delay gradient, KMIT/STFD station allPRN

All PRNs

PRN 31
102 mm/km

<table>
<thead>
<tr>
<th>PRN</th>
<th>Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>31</td>
<td>91</td>
</tr>
</tbody>
</table>
13 Sept, 2014

KMIT

STEC (TECU)

Time (UTC)

ROTI

STEC (TECU)

Time (UTC)

KMIT station

STFD
13 Sept, 2014

Ionospheric delay gradient, KMIT/STFD station all PRN

<table>
<thead>
<tr>
<th>PRN</th>
<th>Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>160</td>
</tr>
<tr>
<td>29</td>
<td>187.5</td>
</tr>
</tbody>
</table>

PRN 29
162 mm/km
• In order to process a lot of GPS data for ionospheric delay gradient monitoring, the previous studies proposed the data processing-step, focus on the SED event on 20 November 2003.

• However, they did not consider the plasma bubble occurrence in equatorial and low-latitude regions.
Ionospheric delay gradient for equatorial and low-latitude regions

Raw RINEX data
- Pseudorange and carrier phase measurements of dual-frequencies GPS receiver

Pre-processing
- Processed by GPStk
 - Cycle slip detection
 - Short-arc removal
- Using carrier (L1, L2) and code measurement (C1, P2)

Compute Slant TEC (STEC)
- *Biases are not calibrated*

Find Plasma Bubble Occurrence (using ROTI)
- ROTI > threshold

Update Ionospheric Threat Model
- Update a new bound

Manual Validation
- Validate the true ionospheric phenomena

Find Maximum Ionospheric gradient (Station Pair)
- *Receiver biases are calibrated using station pair method*
Conclusions

- The geomagnetic storm during 26-27 Aug, 2014 nor 12-13 Sept, 2014 did not cause the ionospheric disturbance as seen from the ROTI plot around low-latitude KMITL station, but ROTI plots show disturbance around sunset time during the whole of September.

12-13 Sept, 2014

- We see the disturbance around the sunset time during 12-13 Sept, 2014, likely caused by the plasma bubbles (common during the equinoctial months).
- The maximum slant TEC gradient on the East-West direction is measured to be 162 mm/km (PRN29)
Thank you for your attention!
Question?
IRI 2015 workshop aims to provide a venue to bring together a wide audience of academics and researchers from around the world to meet and discuss the latest ideas and present research results related to Space, ionospheric modeling, and IRI improvements and extensions. Special emphasis will be on improvements of IRI in the equatorial region and on the progress towards a Real-Time IRI. It is also our intention to enhance the research collaboration worldwide.

Topics include:
- Ionospheric observation
- Ionosphere-Troposphere Coupling
- Topside and bottomside profiles
- Global representation of peak parameters
- Representation of plasma temperatures
- IRI and GNSS
- Real-time IRI
- IRI Applications
- New Inputs for IRI
- Space Weather Education
- Effects of Ionosphere on GNSS (aeronautical, satellite, etc.)
- Space Weather applications (disasters, satellite, communications)