Variations in the Neutron Time Delay Distribution at the Princess Sirindhorn Neutron Monitor

<u>A. Sáiz</u>^{1,2}, D. Ruffolo^{1,2}, N. Kamyan^{1,2}, T. Nutaro^{2,3}, S. Sumran³, C. Chaiwattana³, N. Gasiprong³, C. Channok³, M. Rujiwarodom⁴, P. Tooprakai^{2,4}, B. Asavapibhop⁴, J. W. Bieber⁵, J. M. Clem⁵, P. Evenson⁵, and K. Munakata⁶

 ¹ Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
 ² Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand
 ³ Department of Physics, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
 ⁴ Department of Physics, Chulalongkorn University, Bangkok 10400, Thailand
 ⁵ Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
 ⁶ Physics Department, Shinshu University, Matsumoto, Nagano 390-8621, Japan

August 16, 2012

・ロト ・ 雪 ト ・ ヨ ト

Outline

Introduction Cosmic Rays The Princess Sirindhorn Neutron Monitor

Time delay distributions Chance coincidences Following counts Leader fraction *L* Corrections for dead time and overflow

Analysis of temporal variations of *L* Results

Conclusions

・ロト ・ 一 ・ ・ ・ ・

Cosmic Rays and Space Weather

- Galactic cosmic rays with $E \sim$ tens of GeV
 - Have high speeds, long mean free paths
 - Are affected by interplanetary structures related to solar activity
 - ► Can be used for remotely "probing" near-Earth space ⇒ space weather forecasting
- ► For example:
 - Effects of solar wind structures (high speed solar wind streams, CIRs) at or near Earth seen in cosmic ray anisotropies [Yeeram et al, in preparation]
 - Loss cones prior to Forbush decreases [Leerungnavarat et al 2003]

< ロ > < 得 > < 回 > < 回 >

Cosmic Ray Detection

- Cosmic rays produce cascades of secondary particles on Earth's atmosphere
- If energetic enough, secondary particles reach ground level
- Neutron monitors measure atmospheric neutrons from cosmic ray cascades
 - Sensitive to air mass:
 P correction

Alejandro Sáiz (Mahidol University) Neutron Time Delay Distribution at the PSNM

200

Neutron Monitors

- Neutron monitors are designed to monitor number of cosmic rays
- Originally not designed to measure cosmic ray energy
- Multi-station measurements can give spectral information
- What can be done with a single station?

Figure: Neutron monitor locations and vertical cutoff rigidity contours. Credit: R. Pyle

< A >

The Princess Sirindhorn Neutron Monitor (PSNM)

- PSNM operates since late 2007
- Location: Doi Inthanon, Chiang Mai province
- Altitude: 2565 m over sea level
- ► World's highest cosmic ray cutoff rigidity (pc/q) for a fixed station, 16.8 GV

PSNM is a standard 18-NM64:

- 18 proportional counter tubes (¹⁰BF₃ gas)
- 30 tons of Pb as neutron producer
- Polyethylene neutron reflector and moderators

One atmospheric neutron interacts with a Pb nucleus producing more neutrons, which are moderated by the polyethylene and finally detected in the proportional counters through

 $n + {}^{10}B \longrightarrow {}^{4}He + {}^{7}Li^*$

イロト イポト イヨト イ

Time delays

The electronics in PSNM's data acquisition system records time delays between successive neutron counts

- Long time delays: counts from independent atmospheric neutrons
- ► Short time delays: mostly from neutrons produced from the same Pb nucleus ⇒ information about cosmic ray energy
 - Cosmic rays with higher energy produce higher energy atmospheric neutrons
 - \blacktriangleright Neutrons with higher energy produce larger numbers of neutrons in the Pb
 - \blacktriangleright Multiple neutrons produced together in the Pb show short time delays
- But some are just chance coincidences!

< ロ > < 得 > < 回 > < 回 >

Chance coincidences

R(t) is the probability of time delay $\geq t$ for a neutron count in one counter tube

- n(t) is the probability density function: $n(t) \equiv -dR/dt$
- $\blacktriangleright \alpha$ is the probability per unit time of having a new count If all the counts were independent:

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -lpha R$$
, or $\frac{\mathrm{d}}{\mathrm{d}t} \ln R = -lpha$, so $R = \mathrm{e}^{-lpha t}$

and

$$n = \alpha e^{-\alpha t}$$

 \implies a straight line in a log-linear plot of n(t)

・ロト ・ 雪 ト ・ ヨ ト

Example of n(t) at one counter tube recorded during one hour

- Long time delays (a) show the exponential distribution typical of unrelated events
- Short time delays (b) deviate substantially from the exponential (blue line).

Following counts

Short time delays are dominated by counts of neutrons produced from the same Pb nucleus \implies "following" counts

- Total distribution is not the sum of follower distribution and chance coincidences: distributions are not independent!
- > Distribution of chance coincidences gets affected by followers, and vice versa

The "conventional" way to estimate following counts:

- Number of counts during a short time window: multiplicity
- Contaminated by chance coincidences

< ロ > < 同 > < 回 > < 回 >

Leader fraction

If $\beta(t)$ is the probability per unit time of a following count with delay t since the previous count from the same production event, then

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -R\left(\alpha + \beta(t)\right), \quad \text{or} \quad \frac{\mathrm{d}}{\mathrm{d}t}\ln R = -\left(\alpha + \beta(t)\right), \quad \text{so} \quad R = \mathrm{e}^{-\alpha t} \mathrm{e}^{-\int_{\mathbf{0}}^{t} \beta(t') \, \mathrm{d}t'}$$

We define the nuclear part of R(t) as:

$$R_{\mathsf{n}}(t) \equiv \mathrm{e}^{-\int_{\mathbf{0}}^{t} \beta(t') \, \mathrm{d}t'}$$

Then

$$\mathbf{n} = \alpha \,\mathrm{e}^{-\alpha t} R_{\mathsf{n}} - \mathrm{e}^{-\alpha t} \frac{\mathrm{d} R_{\mathsf{n}}}{\mathrm{d} t}$$

For long time delays, $dR_n/dt \simeq 0$ and $R_n \simeq \text{constant}$: $R_n \simeq R_n(\infty) \equiv L$ \implies leader fraction, and

$$n \simeq \alpha L e^{-\alpha t}$$

L is the probability for a neutron count to be the leader in a "multiple count"

- L is larger when multiplicity is smaller
- It may contain information about cosmic ray energy
- Free from effects of chance coincidences

Fitting the exponential tail in the data (a) to $n \simeq \alpha L e^{-\alpha t}$ we can estimate both α and L.

Corrections to the equation

- ▶ The electronics have a dead time $t_{dead} \simeq 0.1 \, \mathrm{ms}$ (time delays shorter than t_{dead} are not recorded)
- ► There is an electronics overflow at $t_{\text{overflow}} \simeq 142 \, \text{ms}$ (time delays longer than t_{overflow} are recorded modulo t_{overflow})

Both effects vary with α . We include the corrections in order to estimate *L* more accurately:

$$\mathbf{n} \simeq lpha \, \mathbf{L} \, \mathrm{e}^{lpha \, t_{\mathsf{dead}}} \left[1 + rac{1}{\mathrm{e}^{lpha \, t_{\mathsf{overflow}}} - 1}
ight] \mathrm{e}^{-lpha t}.$$

・ロト ・ 一 ・ ・ ・ ・

Analysis of temporal variations of L

We estimate α and then L from fit to exponential tail of time delay distributions at PSNM

- Hourly-averaged distributions
- 18 months of data (July 2009–January 2011)
- Individual counter tubes

Variations of α

 α related to uncorrected count rate \implies atm. pressure

Alejandro Sáiz (Mahidol University)

Variations of L

- I should be free from the effect of chance coincidences
- L is quite constant for each tube
- L is lower for the end tubes: reflection at the sides

Variations of L

- Small but clear correlation with atm. pressure
- At high P (larger air mass) multiplicity is smaller so L is larger
- Correcting for this trend still leaves a seasonal variation
- Maybe related to atmospheric structure?

Variations of L

Conclusions

- ► We analyze neutron time delay distributions for the PSNM
- We find time variations in the leader fraction L
 - Related to true neutron multiplicity
 - Not contaminated by chance coincidences
- In the present study, variations may be atmospheric

Thank you for your attention

▲ □ ▶ → □ ▶